

Intro to Ruby on Rails
Ruby on Rails is a Web Framework that relies on the Ruby language to
develop a structure for advanced Web applications. When working in RoR,
you typically set up a local development environment to test out and
develop your applications, and then ultimately launch to a server on the
Web. You can go to www.rubyonrails.org/download to learn more about
what you need to install.

Another good installing option is railsinstaller.org. It sets up everything you
need to get going in one simple install package.

Ruby
Ruby Gems
Rails
Database (sqlite3, mysql, postpres or other)
Terminal Application and Text Edit (or other text editor)

Most new Macs come with these items installed, so usually you are up and
running in a few minutes. You may have to run through some upgrades for
new versions. I have installed everything we need in the lab environment.

RoR relies on MVC architecture to develop applications:

Advanced Online Media
Dr. Cindy Royal
Texas State University - San Marcos
School of Journalism and Mass Communication

MVC Architecture

Model – Responsible for maintaining state of application. It enforces the
business rules that apply to data.

View – Responsible for generating a user interface, based on data in the
model; doesn't handle data.

Controller – Orchestrates the application; receive events from the outside
world, interact with the model, and display views.

When working in Rails, you will use a few different tools. You will be writing
code to the command line via Terminal. This might seem a little odd to you
at first, but you will get used to the Ruby code commands.

You will be modifying files in a text editor. You can use something like
TextEdit or download an app with more features like TextMate or Komodo
Edit.

We'll have a browser open, so we can test changes made to our application.

Start Your Application
To begin building an app, you simply login at the Terminal and switch to the
folder where you want to host your files. The $ indicates your login.

$ cd Sites

Then you create your rails app with the following:
$ rails new path/to/your/application

If you are already in the proper folder, then it looks like this:

$ rails new my_app

Rails creates your application. Then you can change to that folder.

$ cd my_app

At any point, if you want to look at the contents of a folder, use the ls
command.

To start the server, run:

$ rails server

If you go to http://localhost:3000 (or if you are on another server, go to
that server's address and the 3000 port), you can see if your application has
started. You should see the Welcome Aboard page. If so, you are on your
way!

Leave the server running. If you ever need to stop the server, use Ctrl-C.
You can open a New Terminal Shell to continue working. You will need to use
the cd command to get into your apps folder.

Use the Finder to go to the my_app folder you just created on your
computer. Take a look at the folder structure.

Within the app folder, you will see
controllers
helpers
models
views

The controllers folder has a general application.rb file. Any controller you
create will borrow from that file.

We will now generate a controller called Say.

$ rails generate controller Say hello goodbye

With your text editor, open the file say_controller.rb that RoR has just made

for you:
class SayController < ApplicationController

 def hello
 end

def goodbye
 end

end

Find the files under app, views. You should find a folder called say. You will
find the views for hello and goodbye methods. Go to this url and you should
see the file for hello:
http://localhost:3000/say/hello

You have successfully created your first RoR file.

Note: .rb files are pure Ruby files. .html.erb files are a combination of some
Ruby and some HTML. You may need to adjust your preferences in TextEdit
for Open/Save to remove the Rich Text display for certain files.

The Browser sends request to Controller, Controller generates a View.

You can add the current time to the file by adding a paragraph to your View
template like this:
<p>It is now <%= Time.now %><p>

The <% is where Ruby code is stored within an html document.

We could also put the time in the hello method in our controller.

class SayController < ApplicationController

 def hello
 @time = Time.now

end

Where @time is a variable that you can now use in the View.

<p>It is now <%= @time %>

Linking pages
We can put links from the hello page to the goodbye page and vice versa
this way:
<p> Say Hello!
</p>

But a better, more flexible way is to use:
<p>Time to say <%= link_to "Goodbye", say_goodbye_path %>! </p>

The link_to includes the text for the link and calls the goodbye action. You
can put a link to the Hello page in the Goodbye page.

Make a New Rails App and Connect to DB
Now, back to RoR. We are going to create a simple poll app. Make sure you
are in the Sites folder (use cd .. to go back, ls to see what’s in folder, cd
foldername to change to folder)

$ rails new musicpoll
This creates the app, the default is using SQLite3 as database. If you have
other databases installed, you can specify (ex. –d mysql)

Now change to the musicpoll directory
$cd musicpoll

Then you can use this scaffolding command to generate a table with
variables that connects to the app. Scaffold uses standard methods to
interact with the database to make all the CRUD functionality.

CRUD: Create, Read, Update and Delete

$ rails generate scaffold Favorite name:string genre:string comments:string

Scaffold creates a “favorites” table with name, genre and comments as
fields.

Then run the database migration:
$ rake db:migrate

Make sure your application is running
$ rails server

Go to http://localhost:3000/favorites
You will see the beginning of your application!

Adding data to the application
Got to the browser, and with the server running go to
http://localhost:3000/favorites

Use the “New Favorite” link to add a new line to the database with user
input. The data will be added to the database and you will see it in the list
home page view. You can also see that scaffold has created the functionality
for you to Show Edit Destroy the file, basically all the CRUD you need.

Validation
Let's make sure that people have to input certain things before they can go
save a record. Go to the model in apps/models/favorite.rb and add this line

class Favorite < ActiveRecord::Base
 validates_presence_of :name, :genre
end

If anyone tries to create a record that doesn't have at least these 2 things,
they will get an error.

Rails has lots of validation functions. For instance, we might want to make
sure that duplicates aren’t input (if we were doing some kind of an app that
captured unique info)
validates_uniqueness_of :title

Advanced Rails Features and Modifications
Now that you have a working application, you need to add functionality,
make it prettier. But the scaffolding feature gets you started quickly (rapid
application development). There are many things you can do to the
application now, some engaging your knowledge of html/css, some that will
expand your programming knowledge.

Changes to Layout
The basic html template actually lives within the layouts folder under
app/views/layouts. Open application.html.erb

You will see the reference to the stylesheet, which is under
app/assets/stylesheets. Look for scaffold.css and modify.

Then, you can apply your own styling by manipulating the CSS and the
HTML on various pages.

Let's make the table rows have alternating colors in the list.
If you look at index.html.erb (in app/views/favorites), you will see the table
that is made when that page is run. It executes some ruby code that reads
the data from the artists table into the table on the page based on how we
set up the fields. There is one row in the code, because that repeats with the
“do” loop. Add this class to <tr> so it will cycle alternating between two
colors.
<tr class="<%= cycle('list-line-odd', 'list-line-even') %>">

Then, go into your scaffold.css stylesheet and add the following properties:

.list-line-even {
 background: #e0f8f8;
}

.list-line-odd {
 background: #f8b0f8;
}

Make dropdown for genre
We really want to create a dropdown for our genres, so we only get genres
in which we are interested. Find _form.html.erb in the apps/views/favorites
folder. Replace the genre text_field line with:
<%= f.collection_select :genre, Favorite::GENRES, :to_s, :to_s,
:include_blank => true %>

Then in your model (apps/models/favorite.rb), include the line that defines
your genres:

GENRES = ['Rock', 'Country', 'Classical', 'Pop', 'Other']

You can add this above the validation line.

Find total records
Count method counts records in db. Add this to the View index.html.erb
(app/view/favorites/index.html.erb). Put this line below the table.

<p>Total records: <%= Favorite.count %></p>

Total the answers to genre
Now we want to total the results of genre so we can show in a chart.
First we adjust the model (app/model/favorite.rb)
Add these lines of code after the validation line:
scope :rockvotes, :conditions => { :genre => 'Rock'}
scope :countryvotes, :conditions => { :genre => 'Country' }
scope :classicalvotes, :conditions => { :genre => 'Classical' }
scope :popvotes, :conditions => { :genre => 'Pop' }
scope :othervotes, :conditions => { :genre => 'Other' }

They define the scope of each of our votes in genre based on the condition
of the answer.

Then we adjust the controller (app/controllers/favorites_controller.rb):
In the def show area, add this (first line should be there):

@favorite = Favorite.find(params[:id])
 @rockvotes = Favorite.rockvotes.length
 @countryvotes = Favorite.countryvotes.length
 @classicalvotes = Favorite.classicalvotes.length
 @popvotes = Favorite.popvotes.length
 @othervotes = Favorite.othervotes.length

Then in the View for the Show page (app/view/favorites/show.html.erb)
<p>Total records: <%= Favorite.count %>

Rock Votes: <%= @rockvotes %>

Country Votes: <%= @countryvotes %>

Classical Votes: <%= @classicalvotes %>

Pop Votes: <%= @popvotes %>

Other Votes: <%= @othervotes %></p>

Add these lines above the links at the bottom. I chose to enter these on the
Show page, because ideally the user would never see and have access to the
actual table with the CRUD on the index page.

Then you should be able to add a new vote and then see the results.

Show results in a chart
Last, but not least, let’s show the results in a Google Chart. It’s easy, now
that all our variables are named.

<p><img border="1"
src="http://chart.apis.google.com/chart?cht=p3&chs=250x100&chd=t:<%=
@rockvotes %>,<%= @countryvotes %>,<%= @classicalvotes %>,<%=
@popvotes %>,<%= @othervotes
%>&chl=Rock|Country|Classical|Pop|Other>"></p>

Put this code below the results and above the links in the show.html.erb
page. When you paste, make sure there aren’t any erroneous spaces
created.

There's a lot more you can do to make a functioning and well designed app.
But this is a start. Consider what you might be able to develop with just
these basic skills.

Launching Your App on the Web
To launch your app on the Web, you need a server that supports Ruby and
Rails and will support your database. Many hosts offer Ruby on Rails
support, like your Bluehost account. You can also launch to a site like
Heroku for simple testing or apps without heavy traffic anticipated. See
Heroku Handout for more information.

We won’t be doing these sections in class, but here are some additional
instructions.

Add a New Genre
To add a new genre, you simply have to do all the things we did above to
make sure your new genre is included.

Model (app/model/favorite.rb):
Hip Hop Votes: <%= @hiphopvotes %>

Controller (app/controllers/favorite_controller.rb):
@hiphopvotes = Favorite.hiphopvotes.length

View (app/view/favorites/show.html.erb):
<p>Hip Hop Votes: <%= @hiphopvotes %></p>

Add new genre to chart:
<p><img border="1"
src="http://chart.apis.google.com/chart?cht=p3&chs=250x100&chd=t:<%=
@rockvotes %>,:<%= @popvotes %>,<%= @countryvotes %>,<%=
@classicalvotes %>, <%= @hiphopvotes %>, <%= @othervotes
%>&chl=Rock|Pop|Country|Classical|HipHop|Other>"></p>

Modifying the App with Migrations
Migrations – add a column to the database table.
$ rails generate migration add_twitter_to_favorite twitter:string

The following migration is created in the db folder.
class AddTwitterToFavorite < ActiveRecord::Migration
 def change
 add_column :favorites, :twitter, :string
 end
end

Then run the migration again, if you made any changes to the file:
$ rake db:migrate

You need to make one change in the model. Add :twitter to the list of
attr_accessible in favorite.rb.

For the view, you must change all the applicable files:

index.html.erb
Add a line for Twitter in the header of the table
<th>Twitter</th>

and a line to add to the table:
<td><%= favorite.twitter %></td>

form.html.erb - add at end of form, before submit div
<div class="field">
 <%= f.label :twitter %>

 <%= f.text_field :twitter %>
 </div>

show.html.erb – slightly different; add to list
<p>
 Twitter:
 <%= @favorite.twitter %>
</p>

